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We calculate the distribution of the scattering matrix at the Fermi level for chaotic normal-superconducting
systems for the case of arbitrary coupling of the scattering region to the scattering channels. The derivation is
based on the assumption of uniformly distributed scattering matrices at ideal coupling, which holds in the
absence of a gap in the quasiparticle excitation spectrum. The resulting distribution is the analog of the Poisson
kernel for the nonstandard symmetry classes introduced by Altland and Zirnbauer. We show that unlike the
Poisson kernel, the analyticity-ergodicity constraint does not apply to our result. As a simple application, we
calculate the distribution of the conductance for a single-channel chaotic Andreev quantum dot in a magnetic
field.
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I. INTRODUCTION

Statistical aspects of electronic transport through chaotic
cavities �quantum dots� can be efficiently described using a
random matrix model for the N�N unitary scattering matrix
S of the system �see Ref. 1 for a review�. For sufficiently low
temperatures and voltages, transport properties can be ex-
pressed by the scattering matrix at the Fermi level. Besides
unitarity, a crucial role is played in the random matrix mod-
els by the additional constraints satisfied by S, defining the
so-called symmetry classes.

In the absence of superconductivity, following Dyson,2

three symmetry classes are distinguished, depending on the
presence or absence of time-reversal and spin-rotation sym-
metries. In this classification scheme, the cases are labeled
by the index � and the additional constraints on S are as
follows. In the presence of time reversal, as well as spin-
rotation symmetry ��=1�, S is symmetric, S=ST. In the ab-
sence of time-reversal symmetry ��=2�, the only require-
ment is the unitarity of S. In the presence of time-reversal
symmetry, but without spin-rotation invariance ��=4�, S is
self-dual, S=SR. �The dual of a matrix A is defined by AR

=�AT�T, with �= i�2, where � j denotes the jth Pauli matrix in
spin space.� It has been shown3 that for ideal coupling of the
scattering channels to the cavity, i.e., in the absence of direct
reflection from the cavity openings, the distribution of S is
uniform. Physically, this means that the flux incident in one
scattering channel is, apart from the restrictions due to time-
reversal and spin-rotation symmetries, statistically equally
distributed among the outgoing channels.1 In mathematical
terms, the uniform distribution of S is understood with re-
spect to the invariant measure in the unitary group subject to
the constraints imposed by the symmetries under spin rota-
tion and time reversal. From the uniform distribution at ideal
coupling, it follows3 that at arbitrary coupling the probability
density of S is given by the Poisson kernel3–8

P��S� � �det�1 − r†S��−��N+2−��, �1�

where r is the matrix describing the direct reflections from
the openings.

Dyson’s classification scheme becomes insufficient in the
presence of superconductivity.9–11 In normal-superconduct-

ing hybrid systems, the scattering matrix acquires an elec-
tron-hole structure,12–14 and it satisfies10 a constraint at the
Fermi level, S=�1S��1, expressing the electron-hole symme-
try. �� j denotes the jth Pauli matrix in electron-hole space.�
Altland and Zirnbauer10 showed that depending on the sym-
metries under time reversal and spin rotation, these systems
fall into four new symmetry classes, which they labeled fol-
lowing Cartan’s notation of the corresponding symmetric
spaces. Systems where both symmetries are broken, belong
to class D. If only spin-rotation invariance is broken, class
DIII is realized. If only time-reversal symmetry is broken,
the system belongs to class C, and finally, if all symmetries
are present, the system belongs to class CI. The requirements
for S following from time-reversal and spin-rotation symme-
tries are the same as in the absence of superconductivity.
Assuming gapless quasiparticle excitations, Altland and
Zirnbauer introduced a random scattering matrix model for
transport in chaotic normal-superconducting systems by
adopting a uniform distribution for the scattering matrix.
This is appropriate for the case when the coupling of the
cavity to the transport channels is ideal. The analog of the
Poisson kernel, i.e., the distribution of S for the case of ar-
bitrary coupling, to the best of our knowledge, has not been
presented yet. In this paper, we aim at providing this result.
We believe that the knowledge of this distribution is desir-
able, as it can serve as a starting point to extend results that
are based on the Poisson kernel P��S�, from Dyson’s stan-
dard symmetry classes to the classes of Altland and Zirn-
bauer. As a particular example we mention the study of
dephasing in the framework of Büttiker’s dephasing lead
model.15–18 In this model, in order to account for dephasing
mechanisms that occur uniformly in the quantum dot, the
knowledge of the distribution of the scattering matrix for
nonideal coupling is essential.19

The paper is organized as follows. In Sec. II we relate the
attributes of the scattering matrix to those of normal-
superconducting quantum dots, and we briefly discuss the
conditions at which a random scattering matrix description
for the transport in such systems is adequate. In Sec. III we
detail the properties of the manifolds in the space of N�N
matrices defined by the constraints on the scattering matrix
corresponding to the symmetry classes of Altland and Zirn-
bauer. In Sec. IV we present the calculation of the distribu-
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tion P�S� of the scattering matrix based on the assumption
that S is uniformly distributed in the ideal coupling case. We
illustrate the use of our result in Sec. V on a simple but
physically realistic example, a single mode normal-super-
conducting quantum dot in magnetic field. We conclude in
Sec. VI by contrasting P�S� and the Poisson kernel P��S�
regarding the analyticity-ergodicity constraint of Ref. 6.

II. PHYSICAL REALIZATION OF THE SCATTERING
MATRIX ENSEMBLES

In the case of the symmetry classes of Altland and
Zirnbauer,9,10 the role of the chaotic cavity is played by a
so-called chaotic Andreev quantum dot,20 i.e., a structure
formed by a chaotic normal conducting quantum dot con-
tacted to superconductors. In the vicinity of the Fermi level,
there are no propagating modes in the superconductors. We
consider the situation when the Andreev quantum dot is con-
tacted to normal reservoirs. The number of propagating
modes in the contacts to the normal reservoirs �normal con-
tacts for short�, including electron-hole degrees of freedom,
defines the size of the scattering matrix S. We concentrate on
the regime where transport properties can be expressed in
terms of the scattering matrix at the Fermi energy: the tem-
perature and the voltages applied to the normal reservoirs are
assumed to be much smaller than the energy scale corre-
sponding to the escape rate from the normal region and the
gap of the superconductors. �The superconductors are as-
sumed to be grounded.� A sketch of an Andreev quantum dot
with two superconducting and one normal contact is shown
in Fig. 1. �Charge transport can already take place using one
normal contact due to the Andreev reflection at the supercon-
ducting interfaces.12–14,21�

By slightly varying the shape of the Andreev quantum
dot, one obtains an ensemble of systems and, therefore, an
ensemble of scattering matrices. We discuss below the con-
ditions at which this ensemble can realize the random scat-
tering matrix models discussed in this paper. The only pa-

rameters that enter the scattering matrix distribution are the
symmetries of S and the properties of the normal contacts.
This implies that the conductance of the superconducting
contacts should be much larger than of the normal contacts,
otherwise transport properties would be sensitive to the ratio
of these conductances.22,23 In addition, Frahm et al.24 has
shown that for the effect of the superconductors on the dy-
namics in the cavity to be considerable, the Andreev conduc-
tances of the superconducting contacts should be much larger
than unity.24 This also means that the charging effects are
negligible due to the strong coupling of the dot to the super-
conducting reservoirs.1 For a random scattering matrix de-
scription of transport, it is important that the quasiparticle
excitations are gapless. If the excitations were gapped, the
normal contacts to the Andreev quantum dot would effec-
tively act as normal-superconductor interfaces,22,23 directly
reflecting incoming quasiparticles, i.e., during transport, the
quasiparticles would not explore the chaotic cavity. For a
time-reversal invariant chaotic Andreev quantum dot with
one superconducting contact, the excitation spectrum of the
closed dot �i.e., of the system without the normal contacts� is
gapped �proximity gap�.25 In Refs. 24 and 26 it was demon-
strated that breaking time-reversal invariance with a strong
magnetic field closes this proximity gap, thereby realizing
gapless Andreev quantum dots corresponding to class C or
D, depending on the presence or absence of spin-rotation
symmetry. For classes CI and DIII, time-reversal invariance
requires the absence of magnetic fields in the dot. As sug-
gested in Ref. 10 and demonstrated in Ref. 26, the gap can be
closed by using two superconducting contacts with a phase
difference 	.

The assumption of a uniformly distributed scattering ma-
trix corresponds to assuming that the coupling of the cavity
to the transport channels is ideal, i.e., that the normal con-
tacts are without a tunnel barrier. �The contacts to the super-
conductors can contain tunnel barriers as long as they satisfy
the aforementioned requirements for their conductances.� In
the remaining part of the paper, our task is to generalize this
uniform distribution to one that accounts for nonideal normal
contacts. It is worthwhile to note here that we do not rely on
the specific details of the barriers in the normal contacts, we
only use that the scattering matrix of the barriers satisfies the
same symmetry requirements as the scattering matrix of the
system without the barriers. Our calculation is therefore
equally valid for contacts to the normal reservoirs with tun-
nel barriers that do not mix electrons and holes, and for
barriers that mix electrons and holes. The latter situation can
occur if there is a region with an induced superconducting
gap in the contact to a normal reservoir that the quasiparti-
cles have to tunnel through to reach the �gapless� cavity re-
gion.

III. SCATTERING MATRIX MANIFOLDS

The scattering matrix can be considered as a point of a
manifold MX in the space of N�N matrices, where X refers
to the symmetry class under consideration. The distribution
of the scattering matrix is understood with respect to the
invariant measure on MX. We first state the symmetry prop-

V

S

S

dN

FIG. 1. An Andreev quantum dot formed by a normal conduct-
ing cavity �d� with two superconducting �S� contacts. In the trans-
port state, an infinitesimal voltage V is applied between the
grounded superconductors and the normal reservoir �N� contacted at
the left opening. The distribution of S derived in this paper consid-
ers the effect of a tunnel barrier in the normal contact, indicated by
a black rectangle in the figure.
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erties of MX following Ref. 10. We then take a common
route,1,27 and consider MX as a Riemannian manifold, to
give expressions for the invariant arclength dsX

2

=Tr�dUdU†� and the corresponding measure d
X�U� in an
infinitesimal neighborhood of U�MX. As usual,28,29 we pa-
rametrize this infinitesimal neighborhood with the help of
infinitesimal matrices �UX with symmetry properties dictated
by those of MX such that the measure is simply the product
of the independent matrix elements of �UX.

For class D, the manifold MD is isomorphic to SO�N�
with U=�O�†, O�SO�N�, and

� =
1

2
�1 + i 1 − i

1 − i 1 + i
�, �2 = �1. �2�

It might be worthwhile to note here that solely from the
unitarity of U and the symmetry U=�1U��1 only det U
= 1 follows. In Ref. 10, the manifold MD was identified
through the exponentiation of the Bogoliubov–de Gennes
Hamiltonian, which leads to det U=1 due to the mirror sym-
metry of the energy levels around zero. �The energies are
measured relative to the Fermi level.� The invariant arclength
and measure can be written using �UD=OTdO as

dsD
2 = Tr��UD�UD

T � = 2�
k�l

��UD�kl
2 ,

d
D�U� � �
k�l

��UD�kl. �3�

Note that �UD is antisymmetric due to the orthogonality of
O. It is seen that dsD

2 �and consequently d
D�U�	 is invariant
under �UD→W�UDWT with W�O�N�. Such a transforma-
tion also preserves the antisymmetry of �UD.

The manifold MDIII is spanned by U= ŨŨR, with Ũ
�MD. It is worthwhile to conjugate with

V =
1

2

�− �1 �

�1 �
� �4�

and define Õ=VT�†Ũ�V�SO�N�. The matrix V is chosen

such that ��V�†= ��V�R from which it follows that ŨR

=�VÕRVT�†. MDIII is therefore isomorphic to the manifold

spanned by O=ÕÕR, with Õ�SO�N�. Defining �Õ
=ÕTdÕ, the invariant arclength and measure can be written

in terms of �UDIII=�Õ+�ÕR as

dsDIII
2 = Tr��UDIII�UDIII

T � = 4�
k�l

�dakl
2 + dbkl

2 � ,

d
DIII�U� � �
k�l

dakldbkl, �5�

where, in spin grading,

�UDIII = �da db

db − da
�, da = − daT, db = − dbT. �6�

The parametrization �Eq. �6�	 follows from �UDIII=−�UDIII
T

and �UDIII=�UDIII
R . The arclength dsDIII

2 and the measure
d
DIII�U� are invariant under �UDIII→W�UDIIIW

T with W

�O�N�. If W also satisfies WR=W−1, such a transformation
preserves the symmetries of �UDIII.

In the case of the classes C and CI we omit the spin
degree of freedom, and we use N to denote the size of the
scattering matrices without spin. Electron-hole symmetry is
now expressed by the relation10 U=�2U��2, i.e., U is unitary
symplectic. For class C this defines MC=Sp�N�. The invari-
ant arclength and measure are

dsC
2 = Tr��UC�UC

† � = 2��
q=1

3

�
l

��Ull
�q�	2 + 2�

q=0

3

�
k�l

��Ukl
�q�	2� ,

�7�

d
C�U� � ��
q=1

3

�
l

�Ull
�q���

q=0

3

�
k�l

�Ukl
�q�. �8�

Here, �UC=U†dU with

�UC = 1�eh��U�0� + i�
q=1

3

�q�U�q�, �9�

where 1�eh� is the identity matrix in electron-hole space and
�U�q� are N /2�N /2-dimensional real matrices. Due to
��UC�†=−�UC, they satisfy �U�0�=−��U�0��T and for q�0,
�U�q�= ��U�q��T. The arclength and the measure are invariant
under �UC→W�UCW†, with W�Sp�N�. Such a transforma-
tion preserves the symmetries of �UC as well.

The manifold MCI is spanned by U= ŨŨT, with Ũ

�Sp�N�. Defining �Ũ= Ũ†dŨ and decomposing it according
to Eq. �9�, we define

�UCI = �Ũ + ��Ũ�T = i�1�Ũ�1� + i�3�Ũ�3�. �10�

The invariant arclength and measure are

dsCI
2 = Tr��UCI�UCI

† � = 2� �
q=1,3

�
l

��Ũll
�q�	2

+ 2 �
q=1,3

�
k�l

��Ũkl
�q�	2� , �11�

d
CI�U� � �
q=1,3

�
k�l

�Ũkl
�q�. �12�

The arclength and the measure are invariant under �UCI
→W�UCIW

† with W�Sp�N��O�N�. The symmetry of �UCI
is also preserved under such a transformation.

IV. SCATTERING MATRIX DISTRIBUTION

The scattering matrix S at nonideal coupling can be rep-
resented as a combination of a random N�N scattering ma-
trix S0 at ideal coupling and a fixed 2N�2N scattering ma-
trix Sc responsible for the direct reflections.3 The matrix S0 is
assumed to be uniformly distributed with respect to the in-
variant measure on MX. The matrix Sc is given by
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Sc = �r t�

t r�
� . �13�

Here the dimension of all submatrices is N�N and all of
them carries further structure in electron-hole space and, for
classes D and DIII, also in spin space. The matrix r describes
direct reflection from the contact r� describes reflection back
to the cavity from the contact, and t and t� are the transmis-
sion matrices to and from the cavity, respectively. The scat-
tering matrices S0 and Sc have the same symmetries.

The total scattering matrix S is given by

S = r + t�S0�1 − r�S0�−1t , �14�

and the inverse of the relation is

S0 = �t��−1�S − r��1 − r†S�−1t†. �15�

We derive the distribution of S from the uniform distribution
of S0 following a similar logic to the calculations in Refs. 30
and 31. The starting point of the reasoning is the relation

�S = M�S0M†, �16�

where �S=S†dS, �S0=S0
†dS0, and

M = �1 − S†r�t−1. �17�

The strategy is to express the arclength in an infinitesimal
neighborhood NS of S as

ds2�S� = Tr�dS†dS� = Tr��S†�S� = �
ij

gij�S�dxidxj , �18�

where dxi� denotes the set of independent matrix elements
of �UX in the parametrization of an infinitesimal neighbor-
hood NS0

of S0. �NS is the image of NS0
under the mapping,

Eq. �14�.	 This way we can relate the measure d
�S0� of NS0
to the measure d
�S� of NS as1,27

d
�S� � �det g�S��1/2�
j

dxj � �det g�S��1/2d
�S0� , �19�

where we used that in NS0
, d
�S0��� jdxj. On the other

hand, the probability of NS is the same as of NS0
, i.e.,

P�S�d
�S�=d
�S0�, which gives P�S�� �det g�S��−1/2, the
distribution we are after.

Parametrizing NS with the help of �UX and NS0
using

��UX�0, the relation in Eq. �16� can be written as

�UX = M���UX�0M�†, �20�

where

M� = �†M� for class D , �21a�

M� = VT�†ŨRM�Ũ0
R�†�V for class DIII, �21b�

M� = ŨTMŨ0
� for class CI, �21c�

and M�=M for class C. Here the matrices Ũ , Ũ0 are used to
express S and S0 for class CI and DIII according to Sec. III,

i.e., S= ŨŨy and S0= Ũ0Ũ0
y, where y=T and Ũ , Ũ0�MC for

class CI, and y=R and Ũ , Ũ0�MD for class DIII. The ma-
trix M� satisfies

M� = M�� for class D , �22a�

M� = M�� = �M��T for class DIII, �22b�

M� = �2M���2 for class C , �22c�

M� = M�� = �2M��2 for class CI. �22d�

The reality of the matrix elements of M� for classes D and
DIII follows from the fact that the set of matrices satisfying
A=�1A��1 is closed under matrix addition multiplication
and inversion and that the combination �†A� is real. We
show the proof of M�=�M��T for class DIII. Because of

�V=���V���T, it is enough to show that M̂ =�M̂��T, where

M̂ = ŨRM�Ũ0
R�† = Ũ†S�1 − S†r�t−1S0

†Ũ0. �23�

It is easy to see that

�M̂��T = ŨR�S��1 − STr���t��−1�TS0
R�Ũ0

R�†. �24�

Using Eq. �15� and the self-duality of S and Sc we find

S0
R = �t��1 − STr��−1�TSM . �25�

Substituting in Eq. �24� and using again the self-duality of S
leads to the desired result. The reality of the matrix elements
of M� for class CI can be proven following analogous steps.
The relation M�=�2M���2 for classes C and CI follows
from the closedness of the set of matrices satisfying A
=�2A��2 under matrix addition, multiplication, and inver-
sion.

Following from properties �Eq. �22�	, the matrix M� has a
singular value decomposition

M� = WDW�, �26�

where

D = diag�dk�, k = 1, . . . ,N for class D , �27a�

D = diag�dk�1�sp�, k = 1, . . . ,
N

2
for class DIII,

�27b�

D = diag�dk�1�eh�, k = 1, . . . ,
N

2
for class C , �27c�

D = diag�dk�1�eh�, k = 1, . . . ,
N

2
for class CI �27d�

with 1�sp� being the identity matrix in spin space and

W,W� � O�N� for class D , �28a�

W = �WR�−1, W� = �W�R�−1 � O�N� for class DIII,

�28b�

W,W� � Sp�N� for class C , �28c�
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W,W� � Sp�N� � O�N� for class CI. �28d�

Using the decomposition �Eq. �26�	, the invariant arclength
reads

ds2�S� = Tr��UX�UX
†� = Tr�D��UX��0D	�D��UX��0D	†� ,

�29�

where we used the parametrization ��UX�0=W�†��UX��0W�.
From the properties of W� in Eq. �28� it follows that the
matrix ��UX��0 has the same symmetries as ��UX�0. It is easily
read off that


det g�S� � �
k�l

N

dkdl = �
k

N

dk
N−1 = �det M�N−1 for class D ,

�30a�


det g�S� � �
k�l

N/2

�dkdl�2 = �
k

N/2

dk
N−2

= �det M�N/2−1 for class DIII, �30b�


det g�S� � �
k�l

N/2

�dkdl�4�
j

N/2

dj
6 = �

k

N/2

dk
2N+2

= �det M�N+1 for class C , �30c�


det g�S� � �
k�l

N/2

�dkdl�2 = �
k

N/2

dk
N+2

= �det M�N/2+1 for class CI. �30d�

The distribution of S is therefore given by

P�S� � �det�1 − r†S��−�N/t+��, �31�

where t=1 in the absence of time-reversal invariance and t
=2 otherwise and �=−1 in the absence of spin-rotation in-
variance and �=1 otherwise.

V. CONDUCTANCE DISTRIBUTION FOR AN ANDREEV
QUANTUM DOT IN A MAGNETIC FIELD

To illustrate the use of our result, we calculate the con-
ductance distribution for a chaotic Andreev quantum dot in a
magnetic field. We assume that the spin-orbit scattering is
negligible, i.e., the system belongs to symmetry class C. For
simplicity, we consider N=2, which is the minimal dimen-
sion of S due to the electron-hole structure. This corresponds
to the case that the quantum dot is connected to a normal
reservoir via a single mode point contact. A sketch of the
system is shown in the inset of Fig. 2. The point contact is
assumed to contain a tunnel barrier of transparency �. The
barrier alone does not mix electrons and holes, therefore, its
reflection matrix is diagonal in electron-hole space,

r = 
1 − ��ei� 0

0 e−i� � = 
1 − � exp�i��3� . �32�

Here � is the phase an electron acquires upon reflection from
the barrier. The total scattering matrix S is distributed ac-

cording to P�S� in the group Sp�2��SU�2�. The conduc-
tance in units of 4e2 /h is given by12–14

G�S� = �She�2. �33�

Writing the total scattering matrix as S=exp�i��3�U, U
�SU�2� and using that �She�2= �Uhe�2 and d
C�S�=d
C�U�,
the conductance distribution is given by

P�G� = �
SU�2�

��G − �Uhe�2�

�det�1 − 
1 − �U��3
d
C�U� . �34�

Using the Euler angle parameterization for SU�2�,

U = �e−i��+��/2 cos��/2� − ei��−��/2 sin��/2�
ei��−��/2 sin��/2� ei��+��/2 cos��/2�

� ,

��,�,�� � �0,2		 � �0,4		 � �0,		 � D , �35�

the measure is d
C�sin��� and �Uhe�2=sin2�� /2�. The inte-
gral

P�G� =
�3

16	2�
D

d�d�d�F���,�,�� ,

F���,�,�� =
sin�����G − sin2��/2�	

�2 − � − 2
1 − � cos
� + �

2
cos

�

2
�3 �36�

can be evaluated in closed form, resulting in

P�G� = �3�2 + 2�G − 3��� − 1�
��2 − 4G�� − 1�	5/2 �37�

for 0�G�1 and 0 otherwise. In Fig. 2 we show P�G� for
different values of the barrier transparency. It is seen that the
uniform distribution P�G�=1 corresponding to ideal cou-
pling ��=1� is gradually transformed into a distribution that
is peaked at G=0 as the transparency decreases. The first two
moments of the conductance are given by

�G� =
�2

2
, �G2� =

�3

3
. �38�

15

0 1

P
(G

)

G [4e2/h]

d
N

S

v

FIG. 2. Conductance distribution for a single mode chaotic An-
dreev quantum dot in a magnetic field for different values of the
barrier transparency �. A sketch of the system is shown in the inset.
The barrier is indicated by a black rectangle. The solid, dashed, and
dotted curves correspond to �=0.9, �=0.6, and �=0.5,
respectively.
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VI. CONCLUSION

In conclusion, we have calculated the distribution P�S� of
the scattering matrix at the Fermi energy for chaotic Andreev
quantum dots in the nonstandard symmetry classes of Alt-
land and Zirnbauer. Our result, which allows for arbitrary
coupling to the transport channels, is based on the assump-
tion that the scattering matrix is uniformly distributed in MX
for the case of ideal coupling, i.e., in the absence of direct
reflections from the openings of the Andreev quantum dot.
The distribution �Eq. �31�	 is valid for arbitrary number of
modes in the normal contacts; it can be used to calculate
transport properties for systems ranging from single mode
configurations similar to the example of Sec. V to setups
with N�1, for which the escape rate can be large enough
that the condition of much smaller temperature and voltages
�for the transport properties to depend only on the scattering
matrix at the Fermi energy, cf. Sec. II� is comfortably achiev-
able experimentally.

Apart from the symmetry class-dependent exponent, our
result P�S� has a similar structure to the Poisson kernel dis-
tribution P��S� corresponding to Dyson’s standard symmetry
classes. As a closing remark, we would like to emphasize an
aspect in which P�S� and P��S� are different. The distribu-
tion P��S� satisfies6 �� jSaj,bj

pj �=� j�Saj,bj
�pj and �S�=r. The

first condition is called analyticity-ergodicity constraint and
it follows6 from the requirement that the scattering matrix
has poles only in the lower half of the complex-energy plane
�analyticity� and the assumption that spectral averages equal
ensemble averages �ergodicity�. Given the similar form of
P�S� and P��S�, one might wonder whether P�S� satisfies
similar relations. The answer is negative. This can already be
seen in the case of ideal coupling. For example, for class D,
one has10 �S0�=0 but �Tr S0

2�=1, clearly violating the
analyticity-ergodicity constraint. A particular consequence is
that for nonideal coupling, r� �S�. �If the analyticity-

ergodicity constraint would hold, a series expansion of Eq.
�14� would lead to �S�=r.	 To illustrate this, we consider the
example in Sec. V where for �=0, �Tr S�=
1−���+2�, as
opposed to Tr r=2
1−�. Having demonstrated the violation
of the analyticity-ergodicity constraint in the case of chaotic
Andreev quantum dots, we briefly discuss the origin of this
violation. In the presence of superconductivity, spectral av-
erage can mean two types of averages. First, it can refer to
averaging scattering matrices over an interval of excitation
energies �. Since electron-hole symmetry relates scattering
matrices at � and −�, it results in the additional constraint
S=�1S��1 only at �=0. Therefore, such an average would be
over scattering matrices with different symmetry than the
matrices in the ensemble corresponding to �=0, which vio-
lates the ergodicity assumption. Second, the spectral average
can refer to an average over an interval of Fermi energies of
the superconductor while the excitation energy is kept at �
=0. However, if E is a pole of the scattering matrix as the
function of the Fermi energy, so is E�. To see this, one turns
to the channel coupled model used in Ref. 10, in which the
poles of the scattering matrix on the complex-Fermi energy
plane are eigenvalues of a matrix �H− iWW†��3, where H
models the Bogoliubov–de Gennes Hamiltonian �at a fixed
Fermi energy� and W is a coupling matrix. The conjugation
relation between the poles is the consequence of �1�H
− iWW†���1=−�H− iWW†�. The analytic properties of the
scattering matrix as the function of Fermi energy are thus
different that what would be needed for the analyticity-
ergodicity constraint.
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